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Abstract 

In this paper we find the waiting time distribution in the transient domain and 
the busy period distribution of the GI/G/I queue. We formulate the problem 
as a two-dimensional Lindley process and then transform it to a Hilbert factor- 
ization problem. We achieve the solution of the factorization problem for the 
GI/R/I, R/G/I queues, where R is the class of distributions with rational Laplace 
transforms. We obtain simple closed-form expressions for the Laplace transforms 
of the waiting time distribution and the busy period distribution. Furthermore, 
we find closed-form formulae for the first two moments of the distributions in- 
volved. 

TRANSIENT ANALYSIS; BUSY PERIOD; LINDLEY EQUATION 

1. Introduction 

Transient and busy period analyses in queueing models have long been considered as 

very difficult problems, although in many situations it is very important to study the 
transient behavior of queueing systems. For example, systems often encounter transient 
behavior due to exogenous changes, such as the opening or closing of a queueing system 
or the application of a new control. Furthermore, even in systems with time-homo- 

geneous behavior the convergence to steady state is so slow that the equilibrium 
behavior is not indicative of system behavior. Examples from practical situations in 
which transient phenomena are important include manufacturing systems with frequent 
start-up periods and transportation systems with time-varying demand (for example, 
airport runway operations in major airports). 

In this paper, we derive simple closed-form expressions for the Laplace transforms of 
the waiting time distribution under FCFS when the system is initially empty and the 
busy period distribution for the GI/GI1 queue. We first formulate the problem as a 
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two-dimensional Lindley process and then transform it to a Hilbert factorization 

problem. We are able to solve explicitly the underlying factorization problem. Due 
to the numerical tractabilty of the solution, we put special emphasis on the cases of 

GI/RI1 and R/G/1 queues, where R is the class of distributions with rational Laplace 
transforms. 

Formulations of queueing problems as Hilbert factorization problems can be traced 
back in Lindley [10], in which the steady-state waiting-time distribution of the GI/G 1 

queue is derived via a spectral factorization of the underlying Hilbert problem. For other 

examples of the method see Keilson [6], [7]. 
In recent years, work on the transient behavior of queueing systems has concentrated 

on numerical techniques. This change in emphasis was primarily motivated by the 

analytical complexity of the problems involved. The two principal methods are the 
randomization technique introduced by Jensen [5] (see Grassmann [3]) and numerical 

integration methods of the underlying Kolmogorov differential equations (see Gross and 
Harris [4], Section 7.3.2 and references therein). Analytical investigations of the 
transient behavior of queueing systems are in general rare. For the MlMI1 queue, 
expressions for the queue length probabilities are known as sums of modified Bessel 
functions (see Gross and Harris [4]). Ramaswami [ 1 ] has characterized the busy period 
of a GIPHI/ queue using the matrix geometric approach. 

The paper is organized as follows. In the next section, which is central to the paper, we 
formulate the transient behavior of the GI/G/1 queue as a two-dimensional Lindley 
process, derive the key formula of the transient and busy period dynamics and then 
transform it to a Hilbert factorization problem. In Section 3, we solve the factorization 

problem for the RIG/1 queue, while in Section 4 we achieve its solution for the GI/R/I 

queue. In Section 5 we observe how the results of the previous two sections are in 

agreement with the known results for the MIGII and GIIMII queues and consistent 
with the results of Bertsimas and Nakazato [2]. The final section contains some closing 
remarks. 

2. System formulation 

In this section we formulate the transient behavior of the GIIGI1 queue as a 
two-dimensional Lindley process, derive the key formula of the transient dynamics and 
then transform it to a Hilbert factorization problem. Our analysis will focus on the 
notion of a busy cycle, which is defined as the busy period plus an immediately following 
idle period. In Subsection 2.1 we define our notation, in Subsection 2.2 we derive the key 
formula for the transient dynamics and in Subsection 2.3 we transform the problem to a 
Hilbert factorization problem. 

2.1. Notation and assumptions. In this subsection we define the random variables 
and establish the notation we are using. We assume that the system is initially 
idle and the first customer's arriving time is the forward recurrence time of the 
arrival process. Although this assumption is restrictive for the waiting time dis- 

tribution, it is not restrictive for the busy period distribution, since the busy period 
regenerates. 
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We first define the following random variables: 
X,: the service time of the nth customer. 
T,: the interarrival time between the (n - 1)th and nth customer. 
T,: the arriving time of the nth customer. Note that Tr = T1 + 2n k2 Tk. 
z: the arriving time of a random customer. 
BI: the duration of a busy cycle, i.e. the interval between the initiating epoch of a busy 

period and the initiating epoch of the next busy period. 
Bp: the duration of a busy period. 
W, : the waiting time in the queue of the nth customer. 
W+: the waiting time of a random customer. 

We use the following notation: 
a(t): the interarrival time probability density function (p.d.f.). 
a(s): the Laplace transform of a(t). 
I/A = E[T,] = - &(0): the mean interarrival time. 
C2 = Var[Tn]/E[T ]2: the squared coefficient of variation of the interarrival time. 
a*(t): the first customer's arriving time p.d.f. (because of our assumption it is the 

forward recurrence time of the interarrival time). 
a*(s): the Laplace transform of a*(t), i.e. a*(s) = (;/s)( - a(s)). 
b(t): the service time p.d.f. 
fl(s): the Laplace transform of b(t). 
1/# = E[X,] = - =- (0): the mean service time. 
Cx = Var[X,]/E[X1]2: the squared coefficient of variation of the service time. 
p = A/J: the traffic intensity. 
sI(t): the busy cycle p.d.f. 
SP(t): the busy period p.d.f. 
a(s): the Laplace transform of sp(t). 

In addition, we define 

f(x, y) Pr[W+ < y T = x] ay 
1 N 02 
- yPr[r - x, W,+ y] 

(1) = lim 
N-oo I N d 

- -d Pr[Tn x] 

2 00 x ~ Pr[rT < x, W,,+ <y] 
dxdy _ l 

- Pr[Tznx] 
dxn-1 

2.2. Transient dynamics. In this subsection we derive the key formula that describes 
the transient dynamics of the GI/G 1 queue. For notational convenience we enumerate 
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customers by 0, 1, 2, * * *, n in the order of arrival. We analyze the case in which the nth 
customer arrives at the busy period initiated by the kth customer. We let 

Wn= Xr 
r-k+l 

and observe (see Figure 1) that if W+ k - 0 and W, > 0 for r = k + 1 * * n + k - 1 then 

wk+3 

W + I Wk+2 - w*+4 

AX_ _ +i I +2i+3 

T',,, Tk, Tk+3 Tk+4 

Bp 
B, 

Figure 1. Transient dynamics 

k+n 

BI = Tr= Tn+k - Tk, 
r-k+l 

(2) 

Similarly, 

(3) 

k+n-I k+n 

BP= E Xr = E (Tr + r)=B + Wn+k 
r-k r-k+1 

if Wr> 0 for r = k + 1, * , n + k, then W,+k = Wn+k. 

Summarizing, the critical observation is that if W +k - 0, then the idle period 
immediately following the busy period Bp is - Wn+k; on the other hand, if W +k > 0, 
then W +k is the waiting time of the (k + n)th customer. Therefore, if we keep track of 
the busy cycle B, and the quantity W +k, then we can find both the busy period and the 

waiting time from (2) and (3) respectively. For this goal we now consider the joint 
densities: 

02 
A(x, y)= Pr{T, x, nY}, OxOy 

f(x, y)= PrT,+k - x, W+ < y, W , > O, r = k + 1,., n + k, 
OxOy 

fo(x, y) = (x)S(y), 

(L = X,.-I -Tn , 
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where S(x) is the Dirac delta function. Note that the A(x,y) is independent of 
n and f,(x,y) has positive support in y and non-negative support in x, and is 
independent of k. 

Since T+k+l - k = Tn+k - k + T+k+l and Wn+k+l = Wn+k + ,+k+l if Wr >0, 
r = k + 1, ?*, n + k + 1 we obtain the recurrence relations: 

fo(x, y) = 6(x)6(y) 

f,(x, y) = A(x, y)U(y) 
(4) 

fn +(x, y) = [fn(x, y) *A(x, y)]U(y), 
where U(y) is a unit step function and the asterisk denotes the two-dimensional 
convolution sign, that is f (x, y) * A(x,y) f(x - u, y - v)A(u, v)du dv. 
We also define 

02 
rn(x, y) -- Pr{BI x, W,+k y, W,> O, r = k + 1, ., n + k - 1, W+k- 0). 

Note that r,(x, y) has non-positive support in y and non-negative support in x and it is 
independent of k. 

The motivation for the above definitions is that we can express the p.d.f. of the 
quantities of interest in terms of the functions rn(x, y). Clearly 

d r o 
(5) sI(x) A Pr{B, x}- r,(x, y)dy, 

dx P 0 n-l 

and using (2), 

(6) sp(x) A Pr{Bp x} (x - y, y)dy. Sp --_ - rn (X- 
dx 0 n-l 

Using (2) and (3) we obtain in a similar way as before: 

r,(x, y) = A(x, y)(l - U(y)) 
(7) 

rn+(x, Y) = [fn(x, y) *A(x, y)]( - U(y)). 

From (4) and (7) we obtain the key formula for the GI/G/1 transient dynamics in 
real time: 

(8) fn+l(x, y) + r + (x, y) = fn(x, y) *A(x, y). 

2.3. Formulation as a Hilbert problem. In this subsection we work in the transform 
domain, where the solution of (8) is equivalent to a Hilbert factorization problem. We 
introduce the Laplace transforms 

O+(s, w) - J - exp( - sx - y) . f.(x, y)dx dy, 
0o Jo ,n-0 
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p-(s, o) = exp(-sx - y) rn(x, y)dx dy. -a) o n=l 

Note that 

_ f o exp( - sx - c)y)A(x, y)dx dy = a(s - ro),?(o). 

The superscript + is employed to indicate that + (s, c() is analytic in the right half of 
the complex co plane. Similarly, the superscript - indicates that p-(s, c) is analytic in 
the left half of the complex co plane. 

By taking transforms in (8) we obtain 

(+(s, co) + p(s, o) = 1 + a(s - co)fp(o))+(s, w), 

or equivalently 

(9) LD+(s, co)( - a(s - W)P(w))= 1-p-(s, w). 

Equation (9) is a Hilbert factorization problem in co with fixed s, where 

+(s, co) is analytic in Re(w) > 0 and Re(s) > 0, 

p-(s, co) is analytic in Re()) < 0 and Re(s) > 0. 

The following additional boundary conditions complete the description of the factoriza- 
tion problem: 

D+(s oo)= 1( 
0+ 

S f(x, y)dy =6(x) 
\ n=o 

a(0) < f(0) (' p < 1). 

Once p-(s, c) is found, we can use (6) to obtain the Laplace transform of the 
busy period: 

(10) a(s) a f e -SXSp(x)dx=p-(s,s), 

and similarly from (5) 

f e-ssi(x)dx =p-(s, ). 

The transform of the conditional waiting time (transform variable wc) in the queue 
of a customer whose arriving time (transform variable s) is given, can be found 
from 4+(s, co) as follows. From (1) we find that (where the convolution is with 
respect to x) 
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f(x, y) -Pr[W+ _ y IT= x] 
dy 

(11) 
1 ao 

= - a*(x) * S(X) E) f (x, y), 
A r-O n-O 

since we assumed that the arriving time of the first customer is the forward recurrence 
interarrival time and thus from the renewal theorem (or by simply taking Laplace 
transforms) we have 

d X 0 
- ? Pr[Tn < x] = a*(x)* a()(x) =A, 
dXn-l n-O 

and moreover 

a2 00 0o 0 

y Pr[Tn X, W+ _ y] = a*(x) * s')(x) * fn (x,y). 
dxdyn-I r-O n-O 

By defining 

(s, co) = f exp(- sx - oy)f(x, y)dx dy 

and taking transforms in (11) we obtain that 

) a*(s) <s, w)= 
aw 

+(s, co) 
(1 - p-(s, 0)) 

(12) 
IO+(s, w) 
sa+(s, O) 

Therefore, we can express both the transforms of the busy period and the waiting time 
distribution in terms of + (s, co) and p -(s, co). As a result, we have reduced the problem 
of obtaining the transforms of the busy period and the waiting time distribution to the 
solution of the Hilbert problem (9). 

A general solution for the Hilbert problem (9) can be expressed in terms of Cauchy- 
Fourier integration as follows: 

a(s) = 1 - exp (2 - log(x) - log(l - a( - x)fl(s + x))dx) 

where the contour C+ contains the entire non-negative half complex plane and 

tP(s, ct) = exp ( jl S- og (x- log(l - a(s - x)fl(x))dx) 
27r,.p/- I s co a \x - x I 

where the contour C- contains the entire negative half complex plane. The proof of 
this requires heavy machinery from complex analysis. Although this is a result in 
closed form, we do not believe that it is numerically useful, since the inversion of 
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such a transform is numerically unstable due to the multiple branch points in the 
integrand. 

In order to find numerically useful results, we consider two special cases, i.e. the 
RIG/1 and the GIR/1 queue (R is the class of distributions with rational Laplace 
transforms), when one of the distributions has a rational Laplace transform. We obtain 
closed-form solutions for these two cases which are computationally very tractable. As 
pointed out by a referee, an alternative approach is due to Asmussen [ 1 ], who converts a 
two-dimensional Hilbert factorization problem to a matrix-algorithmic form, which 
should then be solved numerically. 

3. The solution of the Hilbert problem for the R/G/1 queue 

In this case a(s) = aN(s)/aD(S), where aD(s) is a monic polynomial in s of degree L and 

aN(S) is a polynomial of degree less than L. 
For fixed s with Re(s) > 0, let z = Xr(s), (r = 1, * * , L) be the L roots of the equation 

(13) a(s - z)(z) = 1, Re(z) >0. 

The proof of this follows along the lines of claim 3 of [2]. Once the number of roots is 
established through Rouche's theorem, we simply follow the methods pioneered by 
Keilson [6], [7]. Now, (9) can be written as 

D+(s, o) 1 -p-(s, c)) 
(14) 

rn,L (x,(s)- W) nII_ (xr (S)- C) 
aD(S - c) - aN(s - C0)f(o) aD(s - c) 

By observing that the expression in the left-hand side of Equation (14) is analytic for 
Re(co)> 0 and the expression in the right-hand side of Equation (14) is analytic for 
Re(w) < 0 and using Liouville's theorem we conclude that both expressions should be 
equal to a function of s. From the boundary conditions of (9) we easily find that the 
function is a constant function 1. To complete Liouville's theorem, we need the 
following proposition. 

Proposition 1. The expressions in both sides of Equation (14) are bounded. 

Proof. Let Re(s) 0. For the left-hand side with Re(cw) 0, it is easily seen 
(since the zeros cancel out) that the denominator is bounded away from 0, and thus 
for some e > 0 

| I_ (x,(s) )) - o) 

aD(s - t))- aN(S - 0)(co) 

We then check that the numerator is also bounded: 

0I+(s, o)1 - O+(o, O) 

=f o fo S'. fn(x,y)dxdy 
OJ OS 0n-0 
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n-O f f.(x, y)dxdy 
n- 0 JO 

o fc k+n 
<_1+ S Pr. ? >0. 

n-O lr-k+l 

Since p < 1, E[(,] < 0 (V r). As a result, applying the Cheroff bound, we obtain that 
there exists a constant < 1 such that Pr{Ok+n > } < S" and thus 

\I+(s, oa)) _-- < oo. 

In an analogous way the denominator of the right-hand side with Re(w) _ 0 is bounded 

away from 0, i.e., for some e > 0: 

rI aLe. 
II,( (xr(s) - |o) 

aD(s - o) 

In addition the boundedness of the numerator of the right-hand side is seen as follows: 

I -p-(s, co)I + Ip-(s, w)l 

_ 1 +p-(O, 0)= 1 +a(0)=2 

< oo. 

Thus by applying Liouville's theorem we conclude that the unique solution to the 
Hilbert factorization problem (9) is: 

IZ l (x,(s)- to) 
0+(s, w) = (r() - ) 

aD(s - co) - aN(s - Co)f#(t) 

p - (S O) r _In-, (x,(s) - co) 
aD(S - t)) 

Hence we get from (12) 

(15) D(^s,to)= aD(s)- aN(S) L Xr(S)- 

S(aD(s 
- O) - aN(S - Co)f)(C))) r-I Xr(S) 

and from (10) 

1 L 
(16) a(s)= 1- a H (Xr(s)- ). 

aD(O) r-I 

The reward of our analysis is a simple closed-form expression for the transform of the 
busy period and waiting-time distribution. Moreover, we can find closed-form expres- 
sions for the first two moments of the waiting time and busy period distribution by 
differentiating the corresponding transforms. The following formulae were derived 
using the symbolic differentiation routine of the software package Mathematica on a 
Macintosh II computer: 
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e-sXE[W+I = x]dx= -lim -(s, C) 
JO ~ ~ ~ ~ ~ C -o aou 

1 _ (l/)a(s) + )+(s) _ D(S)\ 
--- 

Xr(S) 1-a(s) aD(s)' 

J e-'E[(W+)2 Ir= x]dx 

02 
= lim -Q(s, )) 

o-_O aDs 

lf 1 1 + 1&D(S)\2 _iD(S) 

(1 + C2)a(S) - Ca(s)2 + 211a(s) + 2a&(S) 2 + 2a(s) -u 2a(s)d(5) 

/ 2(1 - a(S))2 

L/ I 1 (U /l)a(s) + &(S) _ D(S) + zi2+ 
r -X(5) 1 a(5) ?aD(S) 

d p L-1 
E[Bp]=- lim - a(s) P xl(O), s-o ds (1 -p)aD(O) r-I 

d2 
Var[Bp] = lim log(a(s)) 

s-0o ds2 

p a( - xr(O))(Xr(O)) L- 
fl Xk(O) 

(1 - p)aD() r 1 &(- Xr(O))fl(Xr(O))- a( - Xr(O))P(x,(0)) k- 
k - r 

_ 2(C+CX) L p \2 L1 
f x,I(O) - Dx(0 ) ) I Xr 

(I - p)AaDD(1O) r_ I- p )a o r-, 

where we used 

d a(S - 
Xr(S))/(Xr(s)) 

ds r()) ( -- Xr(S))((Xr(S)) - a(S - Xr(S))f(Xr(S)) 

and 

(s -x,(s)) 
ds2 

= a(s - x,(s))l(x,(s)) 

X [a(s - Xr(S))a(S - Xr(S))P(Xr(S))2 - 2a(s - Xr(S)) 2/(Xr(S))2 

+ a(s - Xr(s))2l(x,(s))i(xr(s))] 

X [(a(S - Xr(s))((Xr(S))- o&(S - Xr(S))fi(Xr(S)))3] -. 
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The formula for the first two moments of the busy period was simplified using the 
observation that there exists a unique root such that XL(O) = 0 (see Keilson [8]). As an 
additional check of the algebra we can verify that for the M/G/1 queue, i.e. L = 1, the 
formula for E[Bp] becomes E[Bp] = 1/(u - A). Finally, note that the roots Xr(0) are 

precisely the roots that appear in the steady solution of the R/G/1 queue. 

4. The solution of the Hilbert problem for the GI/R/I queue 

In this case fi(s) = BN(s)/flD(s), where flD(s) is a monic polynomial in s of degree Mand 

fiN(s) is a polynomial of degree less than M. 
As in the previous section, for fixed s with Re(s) > 0, let z = xr(s) (r = 1,, * * , M) be 

the M roots of the equation 

a(s - z)f(z) = 1, Re(z) <0. 

The unique solution to the Hilbert problem can be found in a similar way as in the 
previous section to be: 

( )L II ( Xr) D(o)- D( - oN(c )N(o) 
p-(s, = 1 

Hence we get from (10) and (12) that 
n,rI (so - X,(s)) 

As an accuracyt the cnneck we can easily check that (17) and (18) arevious section identical with the of Rresults 
for establishe MGE/MGE queue obtained in Bertsimas and Nakazato [2]. As in that 

L+M 

(- 1)L fj ( - xr(s)) = aD(S - co&(/o) - aN(S 
- O)flN(C)). 

r=l 

previous section we can find closed-form formulae for2) the moments of the distributions 

(17) cl)(s, to) = fin(Co) M Xr(S) 

involved as follows: 
involved as T xdx (rXr) ( 

for the MGE 0MG1(~1 1 M I /PD(0' 
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f e-SE[(W+)2 I r = x]dx 

1 r D(O?) flD(0)2 | 1 A(0)2I D 2 

Mi f D(O)\2\ -(~ I 
- 

+ E 
Cr-X- (O S r-lX(s)2 lD(O) \D(0) r Xr(S) AD(0)/ 

(-1)MlPD(O) I 1 
E[Bp] 

I MD (?) 
M 

I 

i rfir-l Xr(O)' 

Var[Bp] 
(- -)MD(O ) ( -( xk(O))O)(xk(O)) 

i k-i Xk(0){a( - Xk(O))If(Xk(O))- a(- Xk(O))fl(Xk())} 

(- l)M(l + C)/JD(O) D(O) - M 1 ) D(O)2 M 1 + n 
#2 )U 

J 
r= l Xr(O) \ U / r- Xr()2 

5. The M/G/1 and GI/M/1 queues 

In this section we verify and generalize well-known results for the GI/M/I and M/GI 
queues. 

For GI/M/1 it is known (Takacs [12]) that a(s) = (1 - w(s))/(s + u - w(s)), where 
w(s) = a(s - x(s)). By letting M = 1 in (18) and observing that w(s)f/(xl(s)) = 1, i.e. 
xl(s) = (w(s)- 1), we find the same expression. 

For the MIGI1 queue it is well known (see Kleinrock [9]) that the busy period satisfies 
a(s) = f(s + . - .a(s)). In order to see how we can derive this from (16) we observe that 
from (16) a(s)= 1 + (s - x(s))/A, whence x,(s)= s + - i a(s). Since xl(s) satisfies 
from (13) 

a(s - x,(s))fl(x(s)) = l(s + X - A(s)) = 1, A + s - x,(s) 

we can now easily derive the desired relation a(s) = p(s + . - (s)). 
The time-dependent behavior of the waiting time can be expressed in terms of a(s) as 

follows: 
1 s - cw + A(1 -(s)) 

s + A( - a(s)) s - c + A(1 - /(C)) 

This is a solution to the well-known Takacs integrodifferential equation (see Kleinrock 
[9] or Takacs [13]). 

6. Concluding remarks 

In this paper we attempted to demonstrate the power of direct probabilistic arguments 
for the waiting-time distribution in the transient domain and the busy period distribu- 
tion for the GI/G/1 queue. We found closed-form expressions for the transforms and the 
first two moments of these distributions. Algorithmically our approach offers a method 
for finding these distributions in the time domain through the numerical inversion of the 
Laplace transforms. In Bertsimas and Nakazato [2] we reported numerical results for 
finding numerically the busy period, the transient queue length and the waiting time 
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distributions in an MGEIMGE/1 queue, by numerically inverting the corresponding 
Laplace transforms. 
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